SYMMETRICAL CHOPPER WITH TAP CHANGING AND SUBCYCLIC SWITCHING

Dr. Kathir. Viswalingam and Dr. F. Emerson Solomon
Professor, Dean R&D, Bharath University, Chennai
Department of Mechanical Engineering, Bharath University, Chennai
Email: kvknowledge5252@gmail.com

Received on: 15.10.2016
Accepted on: 22.11.2016

Abstract

Dual-Tap Chopping Stabilizer is an AC voltage regulator with dual tap changer. AC regulators based on tap changers are implemented with SCR’s and TRIACs are widely used for their robustness. With thyristor soft switching, commutation losses are reduced to nearly zero, but it allows only supercyclic commutation, i.e., only one commutation per cycle is possible. By replacing thyristors with high power transistors and gate turn off thyristors, it is possible to achieve several tap changes in one half cycle, i.e., subcyclic commutation.

In this paper an AC chopper is designed with MOSFET switches to achieve subcyclic commutation. Thus subcyclic switching is achieved. A freewheeling circuit is added in the load side. The freewheeling circuit has the following advantages:

1. Introduction

A. Dual tap chopping stabilizer

A stabilizer is an AC voltage regulator which stabilizes the voltage according to the need. A voltage regulator is an electrical regulator designed to automatically maintain a constant voltage level. It may use an electromechanical mechanism, or passive or active electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.

With the exception of passive shunt regulators, all modern electronic voltage regulators operate by comparing the actual output voltage to some internal fixed reference voltage. Any difference is amplified and used to control the regulation element in such a way as to reduce the voltage error.

This forms a negative feedback control loop; increasing the open-loop gain tends to increase regulation accuracy but reduce stability. In dual tap chopping stabilizer, the voltage regulator works under a permanent pulselength-
modulation switching pattern. Two tapings are taken from the transformer connected to the supply. In this paper two voltage levels chosen are 110(v) and 230(v).

B. Conventional method

Conventional method of dual tap chopping stabilizer employs SCRs for switches. They implement supercyclic soft switching. In supercyclic switching, the switches can be switched ON and OFF only after a half cycle. It requires a commutation circuit and commutation capacitor for zero crossing.

Disadvantages

- Zero crossing detection is required. Switching after one half cycle.
- Commutation losses.
- No control with the gate.

III. Subcyclic Ac Soft Switching

Soft switching is a technique where no mechanical switches are used. Instead the turn on and turn off is carried out using power electronic devices. Thyristors were used to carry out this which allows supercyclic switching. But if high level transistors like IGBTs and MOSFETs are used, subcyclic switching is possible. In subcyclic switching, no zero crossing detection is required and moreover the device can be turned off and on several times within a half cycle. The commutation losses are also eliminated.

IV. Circuit

In this paper a design of dual tap changing stabilizer with subcyclic AC soft switching is presented. Two tappings are taken from the transformer connected to the supply. The chopper circuit is built with four diodes and a MOSFET. Thus subcyclic AC switching is achieved. Two tapping, one for 110v and the other for 230v is taken with the help of a chopper circuit acting as a switch. When the upper switch is on, the load is connected to 230v input. When the lower switch is on, the load is connected to 110v input. A freewheeling circuit is included before the load.

V. Conclusion

A dual tap chopping stabilizer was taken into consideration and simulated using Pspice simulator. MOSFETs were used as switching devices. A transformer was designed to get the two taps of operating voltage. MOSFETs are used in combination with the diodes to get the required working voltage. Here AC soft switching with subcyclic operation was proposed. Because of more periods, chopping of the voltage was achieved. By using MOSFETs, the switching
losses were minimized to near zero. No zero crossing detection was required. A freewheeling circuit was added to the chopper to prevent the sudden current reversal when operating with an inductive load. It also prevents peak currents and transients.

References