DEVELOPMENT AND VALIDATION OF HPLC METHOD FOR DETERMINATION OF MODAFINIL IN HUMAN PLASMA

Damle Mrinalini C*, Deosthali Ajinkya A.
Department of Quality assurance, AISSMS College of Pharmacy, Kennedy road, Near RTO, Pune 411001, Maharashtra, India.

Received on 27-04-2016

Abstract

A simple bioanalytical HPLC method for the estimation of Modafinil in human plasma has been developed and validated. Extracted sample was eluted using C18 (250 x 4.6 mm, 5 μm) column. The mobile phase consisted of methanol, water and gl. acetic acid in the ratio of 60:40:0.1 v/v/v which was sonicated to degas and delivered at a flow rate of 0.8 mL/min at ambient temperature.

The retention time of Modafinil was 6.792 (± 0.1) minutes. Studies were performed using an HPLC system equipped with a UV detector; the response was monitored at 233 nm. The method was validated according to MHLW (Japan) guidelines(2013). The data of linear regression analysis indicated a good linear relationship over the range of 1–10 µg/ml concentrations with correlation coefficient value of 0.992. The accuracy of the method is indicated by good recovery in the range of 98.25%-116.17%and precision with RSD less than 7%. The proposed method can be applied to the analysis of Modafinil from human plasma.

Key Words: Modafinil, Human Plasma, HPLC, Bioanalytical study, Validation.

Introduction

Modafinil is chemically 2-[(Diphenyl methyl)-sulfinyl] acetamide. It is a1-adrenergic agonist and is used for clinical evaluation in hypersonnia and narcolepsy[1]. It is not official in IP, BP, USP but is listed in the Merck Index and Martindale. When oral dose of 200mg is administered in a day, C_max is reported to be 4.61µg/ml ± 0.73 [2].Literature survey revealed the estimation of Modafinil by several techniques such as simultaneous estimation RP-HPLC techniques[3-7]. Determination of related substance in Modafinil and determination of Modafinil by a chiral chromatography[8], LC-MS method for Modafinil in Human Plasma[9], HPLC method for Modafinil in human plasma[10], GC-MS method for Modafinil in Human urine[11]. The methods involved either solid phase extraction[12] or
Liquid-liquid extraction\[^{[13]}\]. The focus of present study was to develop and validate a rapid, simple and economic bioanalytical HPLC method with UV detector for the estimation of Modafinil. In the present study, a new bioanalytical HPLC method was developed which shown high reproducibility and sensitivity. The developed method was validated as per MHLW (Japan) guidelines\[^{[14]}\].

![Fig. 1 Structure of Modafinil.](image)

Materials and Methods

Instrumentation

Bioanalytical assay of Modafinil was performed on HPLC (Make-JASCO) equipped with HiQSiL C18 column (250×4.6 mm; 5μm particle size), Rheodyne injector and Jasco UV 2075 plus detector. The data acquisition was performed by Borwin chromatography software (version 1.5). Digital Balance Shimadzu make was used for weighing chemicals. Ultra-sonic bath sonicator was used for degassing of the mobile phase.

Materials

Pure Modafinil used as working standard, was received as gift from Matrix Laboratories Ltd., Secunderabad, India. All chemicals and reagents i.e. Methanol and gl. Acetic Acid employed were of HPLC grade, and purchased from Loba Chemie.

Selection of Wavelength

From Standard stock solution further dilutions were done using Methanol and it was scanned over the range 200-400 nm. It was observed that drug show considerable absorbance at 233 nm. (fig. 2)

![Fig.2: UV Spectrum of Modafinil(10µg/mL).](image)
Mobile Phase Preparation

Prepare a filtered and degassed mixture of Methanol: Water: gl. Acetic acid in ratio 60:40:0.1 v/v/v.

Preparation of solutions

Stock solution of Modafinil was prepared by transferring accurately weighed 10 mg of Modafinil into a 10mL volumetric flask and making up volume with Methanol.

Preparation of Spiked plasma sample

The reported plasma peak concentration values for Modafinil is 4.61 mg /Lit. i.e. 4.61 µg/mL. On this basis, the linearity range was chosen as 1-10 µg/mL. Spiked plasma was prepared by spiking 4.5 mL plasma with 0.5mL of stock solution (10, 20, 30, 40, 50, 75, 100 µg/mL). The content were mixed by Vortex mixer for 5 min. 1 mL of this solution was pipetted into separate test tube to which 2mL Methanol was added. These solutions were thoroughly mixed by Vortex Mixer and then were centrifuged for 30 min. The clear supernatant was injected. A blank plasma sample was treated similarly.

Fig 3 – Chromatogram of blank human plasma.

Fig. 4 – Typical Chromatogram of blank human plasma spiked with Modafinil 7.5µg/mL (R_t= 6.792 min).
Method Validation

The method was validated in accordance with MHLW guidelines, Japan. According to this guidelines there are parameters for bioanalytical method validation are

1. **Selectivity** - The selectivity of the method was evaluated by analysing pooled plasma samples spiked at LLOQ.

2. **Calibration Curve** - Linearity was tested for the range concentration 1-10 µg/mL. Each sample in 5 replicates was analysed and peak area were recorded.

3. **Accuracy and Precision** - Accuracy was measured by using minimum 5 determination per 4 concentration i.e. at LLOQ, LQC, MQC, HQC. The precision of this method was evaluated by % CV at different concentration levels.

4. **Recovery** - It was evaluated by replicate analysis of at least 3 times each at 3 concentration levels (low-, mid-, and high-levels).

5. **Carry over** - It was evaluated by analysing a blank sample following the highest concentration calibration standard.

6. **Dilution Integrity** - It was evaluated by taking 1 mL spiked plasma of conc. 15 µg/mL and it was tested upon subsequent dilution.

7. **Stability Study** - The stability of the Modafinilsolutions and plasma samples was also evaluated during method validation. Modafinil stability was evaluated using two concentration levels i.e. at LQC, HQC. 3 Types of stability studies were performed i.e. Freeze and Thaw stability, Short term stability and Long term stability.
 - Short term stability - A stock solution was kept at room temperature for 4 hours and checked for its stability.
 - Long term stability - A stock solution was kept in deep freezer for 30 days and checked for its stability.
 - Freeze thaw stability - The stability of low and high quality concentration samples was determined after three freeze thaw cycles. The percent degradation was determined by comparing area.

Results and Discussion

The method was validated in terms of limit of quantification, Recovery, Selectivity, Precision, accuracy and stability

1. **Selectivity**

 It was evaluated using blank plasma samples. The absence of interference at Modafinil retention time was confirmed as shown in Table 1.
Table 1: Results for selectivity.

<table>
<thead>
<tr>
<th>Replicate No.</th>
<th>Nominal concentration (LLOQ) (1µg/mL)</th>
<th>Calculated Concentration µg/mL</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area of Modafinil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>42123.93</td>
<td>1.0477</td>
<td>104.77</td>
</tr>
<tr>
<td>2</td>
<td>43242.07</td>
<td>1.026</td>
<td>102.6</td>
</tr>
<tr>
<td>3</td>
<td>42017.25</td>
<td>1.0611</td>
<td>106.11</td>
</tr>
<tr>
<td>4</td>
<td>47015.07</td>
<td>0.9532</td>
<td>95.32</td>
</tr>
<tr>
<td>5</td>
<td>44986.5</td>
<td>1.0583</td>
<td>105.83</td>
</tr>
<tr>
<td>6</td>
<td>44087.00</td>
<td>0.9735</td>
<td>97.35</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>1.0199</td>
<td>101.99</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>0.042</td>
<td>4.2</td>
</tr>
<tr>
<td>% CV</td>
<td></td>
<td></td>
<td>4.11</td>
</tr>
</tbody>
</table>

2. **Linearity** – Linearity was validated over a range of 1-10µg/ml. Best fit line equation was $y = 40940x - 1235.8$, the correlation coefficient for Plasma spiked with Modafinil (r^2) 0.9992. Representative calibration curve is shown in Figure 5, as shown in Table 2.

Table 2: Linearity Studies of Modafinil.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Conc. (µg/mL)</th>
<th>Area</th>
<th>S.D. (For n=5)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>43876.95</td>
<td>2578.907</td>
<td>102.92</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>80575.15</td>
<td>6632.464</td>
<td>94.79</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>122266.8</td>
<td>1898.057</td>
<td>97.89</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>165435.3</td>
<td>1347.344</td>
<td>99.02</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>205370.00</td>
<td>4825.997</td>
<td>98.122</td>
</tr>
<tr>
<td>6</td>
<td>7.5</td>
<td>322047.1</td>
<td>11252.84</td>
<td>102.21</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>417438.9</td>
<td>14313.84</td>
<td>99.21</td>
</tr>
<tr>
<td>r²</td>
<td></td>
<td></td>
<td>0.9992</td>
<td></td>
</tr>
</tbody>
</table>

Fig.5: Calibration curve of Modafinil.
3. Accuracy

Accuracy was measured by using minimum 5 determination per 3 concentration i.e. at LQC, MQC, HQC level ranged from 86.93%-108.31%, which is within acceptance limit 85%-115% while at LLOQ level ranged from 98.25%-116.17% which is within acceptance limit 80%-120%, as shown in Table 3.

Table 3: Results of Accuracy for Modafinil.

<table>
<thead>
<tr>
<th>Replicates</th>
<th>Calculated conc.</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At LLOQ (1 µg/mL)</td>
<td>At LQC (3 µg/mL)</td>
<td>At MQC (5 µg/mL)</td>
<td>At HQC (7.5 µg/mL)</td>
</tr>
<tr>
<td>1</td>
<td>1.167</td>
<td>2.76</td>
<td>5.00</td>
<td>7.571</td>
</tr>
<tr>
<td>2</td>
<td>1.08</td>
<td>3.04</td>
<td>4.96</td>
<td>7.68</td>
</tr>
<tr>
<td>3</td>
<td>0.98</td>
<td>2.74</td>
<td>4.5</td>
<td>7.90</td>
</tr>
<tr>
<td>4</td>
<td>1.07</td>
<td>3.16</td>
<td>4.34</td>
<td>7.75</td>
</tr>
<tr>
<td>5</td>
<td>1.02</td>
<td>2.75</td>
<td>4.409</td>
<td>8.123</td>
</tr>
<tr>
<td>Mean</td>
<td>1.06</td>
<td>2.89</td>
<td>4.64</td>
<td>7.80</td>
</tr>
<tr>
<td>SD</td>
<td>0.06</td>
<td>0.175</td>
<td>0.28</td>
<td>0.1916</td>
</tr>
<tr>
<td>%CV</td>
<td>5.66</td>
<td>6.02</td>
<td>6.03</td>
<td>2.45</td>
</tr>
<tr>
<td>% Mean</td>
<td>106.57%</td>
<td>96.33</td>
<td>92.80</td>
<td>104.00</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Precision

A) Inter day Precision

The Inter day Precision was evaluated in five replicates for four different concentration of Modafinil on three consecutive days (fresh samples were prepared every day.) The % CV of calculated concentration for all Quality control samples of LLOQ, LQC, MQC, HQC concentration level ranged from 1.37-6.03 as shown in Table 4.

Table 4: Results of Precision(Interday) for Modafinil.

<table>
<thead>
<tr>
<th>Conc. Level</th>
<th>% CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
</tr>
<tr>
<td>At LLOQ</td>
<td>5.66</td>
</tr>
<tr>
<td>At LQC</td>
<td>6.02</td>
</tr>
<tr>
<td>At MQC</td>
<td>6.03</td>
</tr>
<tr>
<td>At HQC</td>
<td>2.45</td>
</tr>
</tbody>
</table>
B) Intraday precision

Repeatability of the method was evaluated in five replicates on the same day for four different concentration of Modafinil (1, 3, 5, 7.5 µg/mL). The %CV of calculated concentrations for all quality control samples at LQC, MQC, HQC concentration levels ranged from , which is within acceptance limit 15%, and at LLOQ levels ranged from 2.1-4.83 as shown in Table 5.

Table 5: Results of Precision(Intraday) for Modafinil.

<table>
<thead>
<tr>
<th>Conc. Level</th>
<th>At LLOQ</th>
<th>At LQC</th>
<th>At MQC</th>
<th>At HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>% CV</td>
<td>4.83</td>
<td>2.1</td>
<td>2.22</td>
<td>3.9</td>
</tr>
</tbody>
</table>

5. Recovery

Recovery was evaluated by replicate analysis of at least 3 times each at 3 concentration levels (low-, mid-, and high-levels). Overall % recovery was found to be 94.092%, as shown in Table 6.

Table 6: Results of Recovery for Modafinil.

<table>
<thead>
<tr>
<th>Conc. Level</th>
<th>Area</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Spiked Plasma</td>
</tr>
<tr>
<td>LLOQ</td>
<td>47271.78</td>
<td>42199.343</td>
</tr>
<tr>
<td>LQC</td>
<td>146205.3</td>
<td>141376.5</td>
</tr>
<tr>
<td>MQC</td>
<td>249130.4</td>
<td>238545.37</td>
</tr>
<tr>
<td>HQC</td>
<td>317978.2</td>
<td>306245.75</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Carry-over

Carry-over evaluated by analysing a blank sample following the highest concentration calibration standard. % Carry over is 4.468, which is within limit as shown in Table 7.

Table 7: Results of Carry-over for Modafinil.

<table>
<thead>
<tr>
<th>Replicates</th>
<th>Area</th>
<th>% Carry Over</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At HQC</td>
<td>At Blank</td>
</tr>
<tr>
<td>1</td>
<td>305965.5</td>
<td>12899.962</td>
</tr>
<tr>
<td>2</td>
<td>323461.9</td>
<td>13921</td>
</tr>
<tr>
<td>3</td>
<td>277948.468</td>
<td>13725.918</td>
</tr>
</tbody>
</table>
7. Dilution integrity

Dilution integrity were evaluated by taking 1 mL spike plasma of conc. 15 µg/mL and it was diluted by adding 2 mL plasma in it.% Recovery of diluted samples was within the range of 95%-102.57% as shown in Table 8.

Table 8: Results of Dilution Integrity for Modafinil.

<table>
<thead>
<tr>
<th>Conc. (µg/mL)</th>
<th>Calculated conc.</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.75</td>
<td>95.00</td>
</tr>
<tr>
<td></td>
<td>4.95</td>
<td>99.18</td>
</tr>
<tr>
<td></td>
<td>5.128</td>
<td>102.57</td>
</tr>
<tr>
<td></td>
<td>4.91</td>
<td>98.22</td>
</tr>
<tr>
<td></td>
<td>4.76</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td>4.8996</td>
<td>98.034</td>
</tr>
</tbody>
</table>

8. Stability

Drug Stability in biological fluid is a function of storage conditions, chemical properties of drug, the matrix and the container system. Stability procedure should evaluate the stability of analyte during sample collection and handling after long term(frozen at intended storage temp.) and short term (room temp.) storage conditions, as shown in Table 9.

A. Freeze and thaw stability-

Freeze and thaw stability of spiked quality control samples was determined after 3 Freeze and thaw cycles stored at -5°C ±0°C. Compared them to the freshly spiked quality control sample to assess stability.

The mean % stability for HQC(7.5 µg/mL) and LQC(3 µg/mL) was found to be 98.59% and 96.42% respectively, which is within acceptance limit of 85-115%.

B. Long Term stability-

Long Term stability of LQC and HQC was determined for period of 1 month stored at 4°C, comparing them to the freshly weighed stock solution assessed for stability. The % mean stability for HQC(7.5 µg/mL), LQC(3 µg/mL) was found to be 98.09%, 96.71% respectively, which is within the acceptance limit 85-115%.
C. Short term stability-

Short term temp.stability of spiked quality control samples was determined for a period of 4 hrs. stored at room temperature. Comparing them against the freshly spiked quality control samples assessed stability. The % mean stability for HQC and LQC are found to be 97.41%, 99.19% respectively, which is within acceptance limit of 85-115%.

Table 9: Results of Stability for Modafinil.

<table>
<thead>
<tr>
<th>Stability</th>
<th>% Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At LQC</td>
</tr>
<tr>
<td>Freeze and Thaw</td>
<td>96.42</td>
</tr>
<tr>
<td>Long Term Stability</td>
<td>96.71</td>
</tr>
<tr>
<td>Short Term Stability</td>
<td>99.19</td>
</tr>
</tbody>
</table>

Discussion

There are a few papers available in literature for HPLC determination of Modafinil in human plasma. In work of Long Shan et al, Modafinil eluted at retention time 14.81 min, but in current work it is 6.79±0.1 min which requires less time. We propose protein precipitation method for plasma sample treatment; which is simpler and economical as compared to solid phase extraction or liquid-liquid extraction mentioned in work by McKinney AR et al and Gorman S.H. et al respectively. Thus the developed method is rapid and simple.

Conclusion

A new, simple and rapid method for the quantification of Modafinil in human plasma using HPLC with UV detection has been developed. The method reported here uses a simple and effective extraction technique with good and reproducible recovery. It is suitable for application to a pharmacokinetic, bioequivalence studies for the estimation of Modafinil from plasma.

References

Corresponding Author:

Damle Mrinalini C,

Email: mcdamle@rediffmail.com