SONOPHORESIS: AN EMINENT ADVANCEMENT FOR TRANSDERMAL DRUG DELIVERY SYSTEM

Sanju Nanda¹, Kamal Saroha², Benika Sharma*²

¹Faculty of Pharmaceutical Sciences, M. D. University, Rohtak- 124001, Haryana, India
²Institute of pharmaceutical sciences, Kurukshetra University, Kurukshetra- 136119, Haryana, India.

Email id: benikarohtak@gmail.com

Received on 10-08-2011
Accepted on 26-08-2011

Abstract

Transdermal drug delivery is an alternative approach in comparison with conventional oral drug delivery systems. However, the stratum corneum, the outermost layer of the skin, acts as a barrier that limits the penetration of substances through the skin. Application of ultrasound to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. The generation of ultrasound and mechanism of sonophoresis with particular emphasis on the role of cavitation, convective transport, and mechanical effects also included. There are certain findings in the field of sonophoresis, namely transdermal drug delivery and transdermal monitoring. Ultrasound has been extensively used for medical diagnostics and to a certain extent in physiotherapy, ultrasonic surgery, and hyperthermia. The article also includes a brief discussion on the variation of sonophoretic enhancement from drug to drug, possible applications of sonophoresis in near future, and several commercially available sonophoretic systems.

Key words: Ultrasound; Sonophoresis; Transdermal; Stratum corneum; Hyperthermia.

1. Introduction

Transdermal therapeutic systems are those therapeutic systems that are self contained, discrete dosage forms which, when applied to the intact skin, deliver the drugs, through the skin, at a controlled rate to the systemic circulation and this delivery system offers an advantageous alternative to common delivery methods such as injections or oral delivery¹. However, applications of transdermal delivery are limited by low skin permeability. Specifically, stratum corneum (SC), the outermost layer of the skin, provides an outstanding barrier against the
external environment and is responsible for skin’s barrier properties. SC is a relatively thin (10–15 µm) impermeable membrane that consists of flat, dead cells that are filled with keratin fibers (corneocytes) surrounded by lipid bilayers. The highly ordered structure of lipid bilayers confers upon the SC an impermeable character. Different techniques, such as chemical enhancers, iontophoresis, electroporation, and ultrasound (sonophoresis) have been used to enhance transdermal drug transport.

Sonophoresis is a phenomenon that exponentially increases the absorption of topical compounds (transdermal delivery) into the epidermis, dermis and skin appendages by ultrasonic energy. Sonophoresis is a localized, non-invasive, convenient and rapid method of delivering low molecular weight drugs and macromolecules into the skin. Mechanistically, sonophoresis is considered to enhance drug delivery through a combination of thermal, chemical and mechanical alterations within the skin tissue. Ultrasound at various frequencies in the range of 20 kHz–16 MHz with intensities of up to 3W/cm² has been used for sonophoresis. Ultrasound parameters such as treatment duration, intensity, and frequency are all known to affect percutaneous absorption, with the later being the most important. Sonophoresis occurs because ultrasound waves stimulate micro-vibrations within the skin epidermis and increase the overall kinetic energy of molecules making up topical agents. Ultrasound mediated transdermal delivery of key compounds was first reported in 1954 by Fellinger and Schmid through successful treatment of digital polyarthritis using hydrocortisone ointment in combination with ultrasound.

Sonophoresis is the technique that is widely used in hospitals to deliver drugs through the skin. Thus, Application of ultrasound to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. Reverse ultrasound technology may also be used for the extraction of interstitial fluid samples for analysis.

1.1 Advantages of using sonophoresis as a physical penetration enhancer

- Low risk of introducing infection as the skin remains intact.
- Allows strict control of transdermal penetration rates.
- Not immunologically sensitizing.
- Reduction of dosing frequency and patient compliance.
- Reduction of fluctuations in plasma levels of drugs.
- Improved control of the concentrations of drugs with small therapeutic indices14-15, 17.
- Permit both local and systemic effects17.
- Less risk of systemic absorption than injection.
- Less anxiety provoking and painful than injection.
- Easy termination of drug delivery in case of toxicity, through termination of ultrasound15-16.

1.2 Disadvantages of using sonophoresis as a physical penetration enhancer

- Stratum corneum must be intact for effective drug penetration.
- Can be time consuming to administer.
- Minor tingling, irritation and burning have been reported (controlled by adjustment of ultrasound)16, 18.

2. Ultrasound

In 1877, Lord Rayleigh published the fundamental physics of sound vibrations, transmission and refraction in “The Theory of Sound”, thereby providing a foundation for modern acoustics19. Ultrasound is a mechanical wave that traverses in the direction of propagation (i.e. longitudinal in nature) and causes vibrating disturbances in the media. Variation induces displacement on the particles at right angles to the direction of propagation which generates modulating pressure on the particles with symmetric zones of compressions and rarefactions, as shown in fig.1, sound can’t exist in vacuum20.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{wave_propagation.png}
\caption{Shows a schematic representation of wave propagation21}
\end{figure}
Sound waves travel through gases, liquids and solids by compressions and rarefactions. In liquids and gases, sound propagates as longitudinal waves, resulting in regions of high and low density because the molecules in the medium vibrate in the same direction as the wave. In solids transverse or shear waves are also present, where particle motion is perpendicular to the direction of wave propagation, as shown in fig.2.

Fig.2. shows a schematic representation of both types of wave propagation

The intensity is progressively lost when a sound wave passes through the body or is deviated from its initial direction, a phenomenon referred to as attenuation. As the frequency increases the vibration amplitude falls, and attenuation increases. All the energy is dissipated over a short distance. Thus, the wavelength of US plays a significant role in drug delivery system.

The resistance of the medium to the propagation of sound wave is dependent on the acoustic impedance \(Z \), which is related to the mass density of the medium \(\rho \) and the speed of propagation \(C \), according to Equation 1:

\[
Z = \rho \times C \quad \text{eq. 1}
\]

The specific acoustic impedances for skin, bone and air are \(1.6 \times 10^6 \), \(6.3 \times 10^6 \) and \(400.0 \text{ kg/ (m}^2 \text{ s)} \), respectively.

As ultrasound energy penetrates the body tissues, biological effects can be expected to occur if the tissues absorb the energy. The absorption coefficient \(a \) is used as a measure of the absorption in various tissues.
For ultrasound consisting of longitudinal waves with perpendicular incidence on homogeneous tissues, Equation 2 applies:

\[I(x) = I_0 \times e^{-ax} \] ……..eq. 2

Where \(I(x) \) is the intensity at depth \(x \), \(I_0 \) is the intensity at the surface and \(a \) is the absorption coefficient. To transfer ultrasound energy to the body it is necessary to use a contact medium because of the high impedance of air\(^2\).

3. Mechanism of Generation of Ultrasonic Waves

Ultrasonic waves are generated by the phenomenon known as piezoelectric effect, in which the high frequency, alternating, electric current applies across a quartz or silicone dioxide crystal, or across certain polycrystalline materials such as lead- zirconate- titanate (PZT) and barium titanate. The crystal undergoes rhythmic deformation due to electric current, producing ultrasonic vibrations. In the process of ultrasonic wave generation, electric energy is converted into mechanical energy in the form of oscillations, which generates acoustic waves\(^3\), \(^{14, 16, 19, 23-25}\). The electrical block diagram of the generation system is given in fig.3. Ultrasound can be applied either continuously or in a pulsed manner.

![Fig.3: Electrical block diagram in the ultrasonic generation system\(^{20}\).]
4. VARIOUS TYPES OF MECHANISM FOR SONOPHORESIS

Although considerable attention has been given to the investigation of sonophoresis in the past years, its mechanisms were not clearly understood, reflecting the fact that several phenomena may occur in the skin upon ultrasound exposure. These include:

- Cavitation (generation and oscillation of gas bubbles).
- Thermal effects (temperature increase).
- Induction of convective transport.
- Mechanical effects (occurrence of stresses due to pressure variation induced by ultrasound)\(^26\)

Cavitation effects

Cavitation is the formation of gaseous cavities in a medium ultrasound exposure. The primary cause for cavitation is ultrasound-induced pressure variation in the medium\(^16\). It is further of two types\(^6, 8, 13, 16\):

1. Inertial cavitation: The rapid growth and collapse of a bubble.
2. Stable cavitation: The slow oscillatory motion of a bubble in an ultrasound field.

Collapse of cavitation bubbles releases a shock wave that can cause structural alteration in the surrounding tissue. The cavitation effects vary inversely with ultrasound frequency and directly with ultrasound intensity\(^13, 16\).

At higher frequencies it becomes difficult to generate cavitation due to the fact that the time between the positive and negative acoustic pressures becomes too short, diminishing the ability of dissolved gas within the medium to diffuse into the cavitation nuclei\(^3-4\). For example, application of ultrasound at 20 kHz induced transdermal transport enhancements of up to 1000 times higher than those induced by therapeutic ultrasound\(^27\). Fig.4 showing the mechanism of ultrasound induced cavitation.
Fig. 4: Enhanced transdermal permeation by cavitation upon application of ultrasound

- **Thermal effects**

Ultrasound does not pass through tissues with 100% efficiency. During its propagation, the ultrasound wave is partially scattered and absorbed by the tissue medium, resulting in attenuation of the emitted wave. The lost energy is converted into heat, while the remainder of the wave penetrates into and propagates through the medium.

- **Convective transport**

Fluid velocities are generated in porous medium exposed to ultrasound due to interference of the incident and reflected ultrasound waves in the diffusion cell and oscillations of the cavitation bubbles. Experimental findings suggest that convective transport does not play an important role in the observed transdermal enhancement.

- **Mechanical effects**

Ultrasound is a longitudinal pressure wave inducing sinusoidal pressure variations in the skin, which, in turn, induce sinusoidal density variation. At frequencies greater than 1 MHz, the density variations occur so rapidly that a small gaseous nucleus cannot grow and cavitation effects cease. But other effects due to density variations, such as generation of cyclic stresses because of density changes that ultimately lead to fatigue of the medium, may continue to occur. Lipid bilayers, being self-assembled structures, can easily be disordered by
these stresses, which result in an increase in the bilayer permeability. This increase is, however, non-significant and hence mechanical effects do not play an important role in therapeutic sonophoresis. Thus, cavitation induced lipid bilayer disordering is found to be the most important cause for ultrasonic enhancement of transdermal transport16.

5. DEPENDENCE OF SONOPHORETIC SKIN PERMEABILISATION ON ULTRASOUND

- **Frequency:** Attenuation of an acoustic wave is inversely proportional to its frequency, and thus as the frequency increases, the ultrasound penetrates less deeply into the skin28. Low-frequency ultrasound ($f\sim20$ kHz) is significantly more potent in enhancing skin permeability compared to therapeutic ultrasound ($f\sim1$-3 MHz)4.

- **Intensity:** The skin conductivity increases with increasing intensity, but up to a certain point, and then drops off. This is due to the increase in the total energy put into the system with increasing ultrasound intensity. The linearity between skin conductivity and ultrasound intensity may break down at higher intensities ($I > 15$ W/cm22) due to other effects such as ‘acoustic decoupling’ which is a phenomena where cavitation generated near the ultrasound source results in the formation of large number of gaseous cavities, thus reducing the amount of energy delivered to the system29.

The intensity I is directly dependent on the acoustic energy E emitted and the speed of sound c in the medium, according to Equation 3:

$$ I = c E \quad \text{equation 3} $$

Energy E is itself dependent on the density of the propagation medium r, on the total pressure p (equal to the sum of the atmospheric pressure and the pressure created by the ultrasound wave) and on the speed of sound c, as Equation 4 shows:

$$ E = \frac{p^2}{rc^2} \quad \text{equation 4} $$

The employed intensities usually lie between 0.5 and 2 W/cm228.

- **Mode:** Ultrasound can be applied in continuous or pulsed (sequential) mode. The rise in temperature is faster and more intense with the continuous mode. Hikima et al. (1998) have shown an increase of transdermal diffusion of prednisolone in vitro by 2-5 fold when increasing the exposure time from 10 to
60 min with 1 MHz ultrasound at intensity 4.3 W/cm² in continuous mode. The pulsed mode is frequently used because it reduces the severity of side effects such as thermal effects. Boucaud et al. (2001) have shown the more effectiveness of pulsed mode in increasing transdermal penetration of fentanyl.

- **Threshold energy**: Skin conductivity enhancement is directly proportional to the incident ultrasound energy density. There exists a threshold ultrasound energy below which the effect of ultrasound on skin conductivity cannot be detected, and beyond the threshold value the conductivity increases with the energy density.

\[E = \text{intensity} \times \text{exposure time} \times \text{duty cycle} \]eq. 5

In other words, regardless of the intensity (higher than the cavitation threshold intensity), exposure time, and duty cycle used in experiments, the effect of ultrasound on skin permeability is similar if the total energy density delivered to the skin is maintained constant (eq.5). The threshold energy density for affect permeability is about 222 J/cm². The magnitude of the threshold depends on the skin itself and may vary between different skin models.

6. **VARIATION IN ENHANCEMENT OF SONOPHORESIS FOR VARIOUS DRUGS**

The observed enhancement for a particular drug depends significantly on the physicochemical and pharmacokinetic properties of the permeant, and hence varies from drug to drug. Another factor of great importance in the selection of drugs is their biological half-life; the lower the half-life, the faster the rate at which steady state levels in blood are attained. The sonophoretic enhancement of transdermal drug transport can be quantitatively predicted based on knowledge of two physiochemical properties of the drug: passive skin permeability, \(P^p \) and octanol–water partition coefficient, \(K_{o/w} \), using the following Equation 6:

\[
K_{o/w}^{0.75} e^{-\frac{1}{(4 \times 10^4) P^p}} \]eq. 6

Where ‘e’ is the relative sonophoretic transdermal transport enhancement defined as: [(sonophoretic permeability / passive permeability) -1]. The drugs having a predicted e value smaller than 1 exhibit no
sonophoretic enhancement (e.g., Lidocaine and salicylic acid) whereas all those having a predicted e value equal to or greater than 1 do exhibit sonophoretic enhancement (e.g., Hydrocortisone and indomethacin)32. The drugs passively diffusing through the skin at a slow rate are most enhanced by the application of ultrasound26.

7. MARKETED PRODUCTS

- **Microlysis:** The Microlysis developed by Ekos is designed to deliver ultrasound and thrombolytic (clot-dissolving) drug directly into the area of a brain clot. The Microlysis device is a miniature catheter that is inserted into an artery in the brain until it reaches the clot. Drug is infused through the catheter to the tip, where a tiny ultrasound transmitter is located. The ultrasound and drug are designed to be administered simultaneously because it has been shown that ultrasound energy induces a temporary change in the structure of a clot that allows the drug to penetrate more efficiently into the inner reaches of the blockage25.

- **Sonoderm Technology:** The sonoderm is a device based on the generation of low frequency ultrasounds waves acting on a vibratory and thermal way, this technology is called ultrasonotherapy. ImaRx is now developing Sonolysis in which MRX-801 microbubbles and ultrasound waves are used to disperse the blood clots and restore blood flow33.

- **SonoPrep:** Sontra Medical Corporation is the pioneer of SonoPrep, a non-invasive and painless ultrasonic skin permeation technology. The medical device uses an ultrasonic method to make skin temporarily more permeable. The small, battery-powered device applies a low-frequency, ultrasonic energy to the skin for 15 seconds. The sound waves open small cavities in the skin by disorganizing the lipid bi-layer, creating tiny, reversible channels through which fluids can be extracted and delivered. The skin goes back to its normal state within 24 hours. Sontra is investigating the delivery of several large proteins and peptides by incorporating the use of the SonoPrep device in combination with transdermal patches to deliver the drug transdermally10, 25. Sontra Medical is also developing a vaccine against dengue fever25.

- **Patch-Cap and U-strip:** In June 2005, Dermisonics obtained the patent for the ultrasonic Patch-Cap and a flexible patch for transdermal delivery of drugs via ultrasound. The U-Strip is a drug delivery system...
incorporating a transdermal patch in combination with microelectronics and ultrasonic technology. It has been designed to facilitate the needle-free delivery of drugs with large molecular structures, such as Insulin into the bloodstream10, 25.

8. USES OF SONOPHORESIS

There are certain applications of sonophoresis technique in the transdermal drug delivery system as mentioned in table 1. And some are given as follows:

- Sonophoresis also used in treatment of glaucoma and corneal infection, to increase the permeability of drugs.
- Ultrasound can also be used for nail delivery of drugs25.
- In the treatment of sick fish by University of Maryland’s Center of Marine Biotechnology. The current method uses intraperitoneal injections which are costly and highly labour intensive. In this experiment, ultrasound was applied to water containing fish and compound of interest. The ultrasound waves increases the permeability of compound into the tissues of the skin and gills. This method is highly cost and labour effective26.
- Ultrasound helps in treatment of wide varieties of sports injuries such as tennis elbow, tendon problems, repairing damaged ligaments, muscle spasms, stiff joints, fractured bones and cartilage. Also used in healing of wounds, skin rejuvenation, nerve stimulation, and improving the strength and elasticity of scar tissues3, 25, 34-35.
- Sonophoresis is used in the treatment of damaged skin3. Process of cavitation takes place during the treatment but the cavities disappear after the treatment and histological examination has shown that the skin is normal after treatment.
- Hormone delivery3, 25.
- Low-frequency ultrasonic gene delivery3, 25, 35.
- Ultrasound is used for Calcific Tendinitis of the shoulder3.
The dolphin therapy and sonophoretic model3. The dolphin therapy arouses a great interest in the whole world, since it causes analgesic effects, removal of depression, and improvement of learning abilities of the children suffering from autism36.

In surgery it helps in incision (dissection), welding (connection), built-up (regeneration), and treatment of biological tissues1,14.

Sonophoresis is also being used in drug enhancement in granulomas and tumors1,14,34-35.

In addition to its effect in delivering compounds into the skin, sonophoresis is being investigated as a way of extracting compounds such as glucose14,37.

\textbf{Table -1: Research on uses of sonophoresis to administer different drugs through the Skin.}

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formulation</th>
<th>Experimental conditions</th>
<th>Membrane used</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldosterone (either 3H or 14C labelled)</td>
<td>Solution of the radiolabelled permeant in PBS</td>
<td>20 KHz, 125mW/cm2, 100msec pulses applied every sec</td>
<td>Human cadaver skin \textit{In vitro}</td>
<td>1400-fold increased in concentration of drug in skin</td>
<td>5</td>
</tr>
<tr>
<td>Arnica montana</td>
<td>Gel</td>
<td>1 MHz, 0.5 W/cm2, P</td>
<td>Rat skeletal muscle</td>
<td>The massage with arnica gel proved to be an effective anti-inflammatory on acute muscle lesion in topical use, also show the ineffectiveness of Arnica Montana sonophoresis</td>
<td>38</td>
</tr>
<tr>
<td>Butanol (either 3H or 14C labelled)</td>
<td>Solution of the radiolabelled permeant in PBS</td>
<td>20 KHz, 125mW/cm2, 100msec pulses applied every sec</td>
<td>Human cadaver skin \textit{In vitro}</td>
<td>29-fold increased in concentration of drug in skin</td>
<td>5</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Solution in pH 7.4 phosphate buffer</td>
<td>40 KHz, 0.44 W/cm2, C</td>
<td>Hairless mouse skin \textit{In vitro}</td>
<td>4-fold increased in concentration of drug in skin</td>
<td>39</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Drug diluted in saline</td>
<td>20 KHz, 2.5 W/cm2, P</td>
<td>Human and hairless rat skin</td>
<td>Transdermal transport of drug was enhanced by both</td>
<td>31</td>
</tr>
<tr>
<td>Drug</td>
<td>Permeant State</td>
<td>Permeant Description</td>
<td>Ultrasound Parameters</td>
<td>Permeant Location</td>
<td>Outcome Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Calcein & D₂O</td>
<td>Solution in PBS</td>
<td>41-445 KHz, 60-240 mW/cm², 30 min</td>
<td>In vitro</td>
<td>Excised hairless rat skin</td>
<td>The calcein flux was increased by 22.3-, 6.3-, and 3.8-fold at frequencies of 41, 158, and 445 KHz respectively</td>
</tr>
<tr>
<td>Corticosterone</td>
<td>Solution of the radiolabelled permeant in PBS</td>
<td>20 KHz, 125 mW/cm², 100 msec pulses applied every sec</td>
<td>In vitro</td>
<td>Human cadaver skin</td>
<td>80-fold increased in concentration of drug in skin</td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>Suspension</td>
<td>20 KHz, 0.8 W/cm², P</td>
<td>In vitro</td>
<td>Rat skin</td>
<td>7-fold increased in concentration of drug in skin</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Tritiated Digoxin</td>
<td>3.3 MHz, 1-3 W/cm², C</td>
<td>In vitro</td>
<td>Human and hairless mice skin</td>
<td>Treatment at 3 W/cm² significantly increased absorption of digoxin across mouse skin but no enhancement across human skin</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>Micellar-encapsulated doxorubicin</td>
<td>20.476 KHz, 1 W/cm², 15 min treatment</td>
<td>In vivo</td>
<td>Rats</td>
<td>Application of ultrasound in combination with drug therapy was effective in reducing tumor growth rate, irrespective of which frequency was employed</td>
</tr>
<tr>
<td>EMLA</td>
<td>Cream</td>
<td>1 MHz, 1 W/cm², 10 min treatment</td>
<td>In vitro</td>
<td>Human volunteers</td>
<td>10, 30, 60-min EMLA application and sonophoresis aided EMLA application were statistically better than control. The sonophoresis aided EMLA application was not satisfactory as compared to the 60 min application of EMLA cream</td>
</tr>
<tr>
<td>Estradiol</td>
<td>Solution</td>
<td>20 KHz</td>
<td>Human</td>
<td>3-fold increased in</td>
<td>5</td>
</tr>
<tr>
<td>Drug</td>
<td>Solution Type</td>
<td>Frequency</td>
<td>Power Density</td>
<td>Contact Duration</td>
<td>Species</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>(either 3H or 14C labelled) permeant in PBS</td>
<td>125mW/cm2, 100msec pulses applied every sec</td>
<td>cadaver skin</td>
<td>concentration of drug in skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fentanyl Solution in PBS</td>
<td>20 KHz, 2.5 W/cm2, P</td>
<td>Human and hairless rat skin</td>
<td>In vitro</td>
<td>Pulsed mode was found to be more effective in increasing penetration of fentanyl</td>
<td></td>
</tr>
<tr>
<td>Heparin Solution of Heparin</td>
<td>20 KHz, 7 W/cm2, P</td>
<td>Pig skin</td>
<td>In vitro</td>
<td>21-fold increased in concentration of drug in skin</td>
<td></td>
</tr>
<tr>
<td>Hyaluronic Acid Solution</td>
<td>1 MHz, 0.4 W/cm2, 10 min treatment</td>
<td>Rabbit</td>
<td>In vivo</td>
<td>Synovial fluid analysis revealed increased absorption and fluorescence microscopy showed deeper penetration of both HA1000 and HA3000, more so with the latter</td>
<td></td>
</tr>
<tr>
<td>Ibuprofen Cream</td>
<td>1 MHz, 1 W/cm2, C</td>
<td>Human (Target knee joint)</td>
<td>In vivo</td>
<td>Ibuprofen phonophoresis found to be effective and generally well tolerated after 10 therapy sessions but it was not superior to conventional ultrasound in patients with knee osteoarthritis</td>
<td></td>
</tr>
<tr>
<td>Indomethacin Ointment</td>
<td>1 MHz, 0.25,0.5,0.75, 1 W/cm2, C</td>
<td>Rats</td>
<td>In vivo</td>
<td>0.75 W/cm2 appeared to be the most effective intensity in improving the transdermal absorption of indomethacin, while the 10 min ultrasound treatment was the most effective</td>
<td></td>
</tr>
<tr>
<td>Insulin Insulin reservoir</td>
<td>20 KHz, 100 mW/cm2, 20 or 60 min</td>
<td>Rats</td>
<td>In vivo</td>
<td>For the 60 min exposure group, the glucose level was found to decrease from the baseline to</td>
<td></td>
</tr>
<tr>
<td>Drug/Compound</td>
<td>Formulation</td>
<td>Parameters (Frequency, Intensity)</td>
<td>Organ/Model</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td>------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ketorolac Tromethamine</td>
<td>Gel</td>
<td>1 MHz, 1W/cm², P</td>
<td>Rats (In vivo)</td>
<td>The drug showed significant anti-hyperalgesic and anti-inflammatory effects</td>
<td></td>
</tr>
<tr>
<td>Lanthanum hydroxide</td>
<td>Suspension</td>
<td>10 and 16 MHz, 0.2 W/cm², 5 or 20 min</td>
<td>Hairless guinea pigs (In vivo)</td>
<td>The 5 min exposure of skin to the ultrasound induced rapid facilitation of LH transport via an intercellular route</td>
<td></td>
</tr>
<tr>
<td>Lidocaine Hydrochloride</td>
<td>Gel</td>
<td>0.5 MHz, 2W/cm², C</td>
<td>Healthy volunteers</td>
<td>Surface anaesthesia sonophoresis group showed a significantly higher pain threshold than other groups</td>
<td></td>
</tr>
<tr>
<td>Mannitol</td>
<td>^3H- mannitol in PBS solution</td>
<td>20 KHz, 2.39-33.46 W/cm², P</td>
<td>Pig skin (In vitro)</td>
<td>The intensity at which enhancement is maximum occurs at about 14 W/cm² for 20 KHz and about 17 W/cm² for 40 KHz. The skin conductivity enhancement was found to be inversely proportional to the distance of horn from skin</td>
<td></td>
</tr>
<tr>
<td>Morphine</td>
<td>Solution in pH 7.4 phosphate buffer</td>
<td>40 KHz, 0.44 W/cm², P</td>
<td>Hairless mouse skin (In vitro)</td>
<td>10-fold increased in concentration of drug in skin</td>
<td></td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td>Radiolabelled solution of drug in PBS</td>
<td>20 KHz, 2.4 W/cm², P</td>
<td>Full thickness pig skin (In vitro)</td>
<td>Successful delivery of antisense oligonucleotides</td>
<td></td>
</tr>
<tr>
<td>Salicylic</td>
<td>Solution</td>
<td>20 KHz,</td>
<td>Hairless rat</td>
<td>Application of low-</td>
<td></td>
</tr>
</tbody>
</table>

-267.5 ± 61.9 mg/dL in 1 h.

Moreover, the 20 min group had essentially the same result as the 60 min exposure at a similar intensity, which indicates that the exposure time does not need to be as long for delivery.
<table>
<thead>
<tr>
<th>Substance</th>
<th>Formulation</th>
<th>Frequency and Power</th>
<th>Study Type</th>
<th>Data Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicylic acid</td>
<td>Gel</td>
<td>2.10,16 MHz, 0.2 W/cm², 20 min treatment</td>
<td>In vivo</td>
<td>Hairless guinea pigs, enhanced transport by at least 300-fold, comparable to in vitro 400-fold enhancement</td>
</tr>
<tr>
<td>Sucrose</td>
<td>Solution of the radiolabelled permeant in PBS</td>
<td>20 KHz, 125mW/cm², 100msec pulses applied every sec</td>
<td>In vitro</td>
<td>Human cadaver skin, 5000-fold increased concentration of drug in skin</td>
</tr>
<tr>
<td>Testosterone</td>
<td>Solid Lipid Micro-particles</td>
<td>1 MHz, 0.5 W/cm², C 20 KHz, 2.5, 3.25, 5 W/cm², P</td>
<td>In vitro</td>
<td>Rat abdomen skin, low-frequency ultrasound resulted in higher transdermal permeation than high-frequency</td>
</tr>
<tr>
<td>Triamcinolone Acetonide</td>
<td>Gel</td>
<td>1.3 MHz, 1.2.5 W/cm², C and P</td>
<td>In vitro</td>
<td>Mouse skin, the highest permeation was observed at ultrasound conditions of 1 MHz, 2.5 W/cm² and in continuous mode</td>
</tr>
<tr>
<td>Water</td>
<td>Solution of the radiolabelled permeant in PBS</td>
<td>20 KHz, 125mW/cm², 100msec pulses applied every sec</td>
<td>In vitro</td>
<td>Human cadaver skin, 113-fold increased in concentration of drug in skin</td>
</tr>
</tbody>
</table>
9. EXPLORING CHARACTERISATION TOOLS

- **Vaccination:** In recent years, the potential for exploiting the skin for purposes of vaccination has received a great deal of attention. Transcutaneous immunization provides access to the immune system of the skin, which is dominated by densely distributed and potent antigen presenting cells (Langerhans cells). Langerhans cells have been shown to play essential roles in the activation of T cell-mediated immune reactions against a wide variety of antigens. In order for this technique to be practical, the vaccine, which is generally a large molecule or complex, has to penetrate the stratum corneum barrier\(^3,23\).

- **Gene Therapy:** Another future application for ultrasound as a topical enhancer, which seems to show promise, lies in the field of topical gene therapy. Gene therapy is a technique for correcting defective genes that are responsible for disease development, most commonly by replacing an ‘abnormal’ disease-causing gene with the ‘normal’ gene. The most obvious candidate diseases for cutaneous gene therapy are the severe forms of particular genodermatoses (monogenic skin disorders), such as epidermolysis bullosa and ichthyosis, healing of cutaneous wounds such as severe burns and skin wounds of diabetic origin. Topical gene therapy acquires the penetration of a large complex to or through the skin. Ultrasound pretreatment of the skin will increase its permeability and permit the delivery of the carrying vector\(^3,23\).

Conclusion

From the study done by the article, it may be concluded that ultrasound can markedly increase percutaneous absorption. Understanding of the mechanisms by which biological effects are produced is still insufficiently understood, and more recent research on this is indicated if the therapeutic potential of ultrasound is to be fully realised. Proper choice of ultrasound parameters including ultrasound energy dose, frequency, intensity, pulse length, and distance of transducer from the skin is critical for efficient sonophoresis.

Several experiments performed by several investigations suggest that cavitation disorganizes the lipid bilayers of the skin through which enhanced transport of drugs may occur. Various studies have indicated that application of ultrasound under conditions used for sonophoresis does not cause any permanent damage to the skin or underlying at definite conclusion more work is required before arriving at definite conclusion regarding the safety of ultrasound exposure. Low-frequency sonophoresis has been shown to increase skin permeability to
a variety of low as well as high molecular weight drugs. Ultrasound mediated enhancement of transdermal transport is mediated by inertial cavitation. Collapse of cavitation bubbles near the stratum corneum is hypothesized to disrupt its structure due to cavitation generated shock waves or microjets. Future research is also required for the better implementation of the ultrasonic technique as it is an eminent technology.

References

Corresponding Author:
Benika Sharma
Research Scholar (M.Pharmacy- Pharmaceutics).
E-mail: benikarohtak@gmail.com